

WHAT ARE IMPLANTS.....???

These are drug loaded devices administred into the subcutaneous region of the skin,by making a small incision on the skin surface, generally ment for delivering the drug at constant rate over a prolonged duration ftime.

Ideal Requirements Of Implants

- 1. Environmentally stable.
- 2. Biocompatible.
- 3. Sterile.
- 4. Biostable.
- 5. Improve patient compliance.
- 6. Release the drug in a rate controlled manner which lead to enhanced effectiveness and reduced side effects.
- 7. Readily retrievable by medical personnel to terminate medication.
- 8. Easy to manufacture and relatively inexpensive.

- Mainly meant for extended drug release over a prolonged duration at a steady state.
- > Quiet suitable for chronic diseases & also for contraception purpose.

Disadvantages

Advantages

►Invasive

➤Termination

➤Danger of device failure

► Adverse reactions

➢Biocompatible issues

Approaches to design implantable therapeutics..

1) Controlled drug release by diffusion......

MEMBRANE PERMEATION- CONTROLLED DRUG DELIVERY A) NON POROUS MEMBRANES

B)MICROPOROUS MEMBRANES

C) SEMIPERMEABLE MEMBRANES

MATRIX DIFFUSION CONTROLLED DRUG DELIVERY USING;

A) LIPOPHILIC POLYMERS

B) HYDROPHILIC POLYMERS

C) POROUS POLYMERS

MICRO RESERVOIR DISSOLUTION CONTROL DRUG DELIVERY

A. HYDROPHILIC RESERVOIR/ LIPOPHILIC MATRIX

B. LIPOPHILIC RESERVOIR/ HYDROPHILIC MATRIX

Controlled drug delivery by activation process

- ✓ Osmotic pressure activated drug delivery
- Vapor pressure activated drug delivery
- Magnetically activated drug delivery
- ultrasonic activated drug delivery
- **Hydrolysis activated drug delivery**

Controlled drug delivery by feed back regulated mechanism

- Bioerosion regulated drug delivery
- Bioresponsive drug delivery

Polymer membrane permeation- controlled drug delivery

In this type, the drug reservoir is encapsulated with in a compartment totally enclosed by a rate controlling polymeric membrane.

The drug reservoir can be either drug solid particles or a dispersion of drug solid particles in a liquid or a solid type dispersing medium

- Polymeric membrane can be fabricated from a homogeneous or a heterogeneous non porous polymeric material or a microporous membrane.
- Encapsulation of drug formulation in to the reservoir compartment can be done by
 - Moulding Spray coating Microencapsulation

Examples

1) Progestasert IUD

The drug reservoir is a suspension of progesterone crystals in liquid silicon polymer is encapsulated in a T shaped Intra Uterine device(IUD) enclosed by a non porous membrane of Ethylene Vinyl acetate co-polymer.

Ocusert system..

Encapsulated cell technology: Schematic diagram of implant placed in vitreous cavity of human eye

≻In this a thin disc of Pilocarpine alginate is sandwiched between two transparent sheets of micro porous membrane fabricated from ethylene vinyl acetate co-polymer.

Matrix diffusion-controlled drug delivery

• In this type of controlled release drug delivery system the drug reservoir is formed by homogenous dispersion of drug particles in a rate controlling polymer matrix fabricated from either a lipophillic or a hydrophilic polymer

The drug dispersion in a polymer matrix is done by

- 1. Blending finely divided drug particles with a liquid polymer or a viscous base followed by cross linking of the polymer chain
- 2. Mixing the drug with a polymer at an elevated temperature
- 3. Dissolving drug and polymer in a common solvent followed by solvent evaporation at elevated temperature or under vacuum
- The resultant drug polymer dispersion is then molded or extruded to form a drug delivery devices of various shapes
- Ex: Contraceptive vaginal ring, Syncro mate B implant, Compudose implant

$dQ/dt=(ACpDp/2t)^{1/2}$

Q/t^{1/2}=(2ACpDp)^{1/2}

Contraceptive Vaginal Ring.....

It is fabricated by dispersing Contraceptive steroid ,e.g. Medroxy Progesterone acetate in viscous mixture of silicon elastomer then extruding the steroid- polymer dispersion into a mould to form a donut shape Vaginal ring.
Others :Synchromate B implant,Compudo Implant

Microreservior partition-controlled drug delivery system

- In this type, drug reservoir is fabricated by micro dispersion of an aqueous suspension of drug in biocompatible polymer to form homogeneous dispersion.
 - Ex. Syncromate-C.

Syncro-Mate-c Implant

It is fabricated by dispersing the drug reservoir which is a suspension of Norgestromet in an aqueous solution of PEG 400 to form millions of microscopic drug reservoirs in a viscous mixture of Silicon elastomers.

Dual Release Vaginal Contraceptive Ring

> It is a suspension of progestin and an Estrogen in an aqueous solution of PEG 400 to form many microscopic drug reservoirs in a viscous mixture of silicon elastomers.

Controlled drug delivery by activation process

- ✓ In this type release of the drug is activated by some physical, chemical, or biological process and/or by the energy supplied externally and the rate of release is then regulated by the processes applied or input of energy
- ✓ Based on the processed applied these activation modulated drug delivery system can be classified in to
- 1. Osmotic pressure activated
- 2. Vapor pressure activated
- 3. Magnetically activated
- 4. Hydrolytic-activated
- 5. Hydration activated

Osmotic pressure activated drug delivery system

<u>Vapour pressure- Activated drug delivery</u>

Empty Weight = 181 g

- 1. Flow regulator
- 2. Silicon polymer coating
- 3. Bellows
- 4. Flouro-carbon chamber
- 5. Infusate chamber
- 6. Flourocarbon fluid filling tube
- 7. Filter assembly

Magnetic- activated drug delivery......

. Ultrasound- activated drug delivery

- This implant utilizes ultrasonic energy to activate the delivery of drug from polymer, this system can be fabricated from either a nondegradable polymer such as ethylen vinyl acetate copolymer or bioerodible polymer such as poly[bis(p- carboxyphenoxy)alkane anhydride].
- Its modulation is still undergoing evaluation.

Hydrolysis- activated drug delivery

Release of drug is activated by hydrolysis of a bioerodible polymer by the cell fluid at the implantation site.

Biodegradable polymers like

- 1.Poly(lactide/glycolide) copolymer
- 2.Poly(orthoester)

3.Poly(anhydride) are used in fabrication of this type of implantable drug delivery system.

 \checkmark This system is made by dispersing loading dose of a drug with in a bioerodible or biodegradable polymer , which is then molded in to pellet or a bead shaped implant.

Controlled drug delivery by feed back regulated mechanism

- Using this group of controlled drug delivery system the release of a drug is activated by some biochemical molecule in the body and its concentration at the implantable site via feedback mechanism
- And the rate of controlled release of drug is regulated by the concentration of biochemical substance detected by a sensor in the feedback mechanism

Bioerosion regulated drug delivery system

- This system consist of a drug dispersed in to a biodegradable polymer matrix like poly vinyl methyl ether and is coated with immobilized urease in a neutral pH..
- Urease at the surface of drug delivery system metabolize urea to form ammonia causing increase in pH at which polymer degrades leading to drug release.

Medical aspects of implantation....

A) The Environment of Living Tissues

B) Reaction of Host to Implant

c) Reaction of implant to Host.

